RESUME

NAME: Dr. ARUP SEN

DESIGNATION: Assistant Professor

CONTACTS:

- 1. OFFICIAL ADDRESS FOR CORRESPONDENCE:
- **2. PHONE : Mobile:** 9641354606 **WhatsApp:** 8017764042
- **3. EMAIL** : **Institutional:** sen.arup@bckv.edu.in

Alternative: senarup777@gmail.com

4.ORCID ID: https://orcid.org/0000-0002-3311-0498

5.GOOGLE SCHOLAR PROFILE:

https://scholar.google.com/citations?user=SHqAG6gAAAAJ&hl=en 6.**RESEARCHGATE PROFILE:** https://www.researchgate.net/profile/Arup-Sen 7.**DATE OF BIRTH:** 10/08/1990 8.**DATE OF JOINING TO THE UNIVERSITY:** 16/10/2015

9. ACADEMIC PROFILE:

LEVEL	NAME OF THE DEGREE WITH DISCIPLINE/ DEPARTMENT	INSTITUTE	YEAR OF PASSING
DOCTORAL	Agricultural Chemistry & Soil Science	B.C.K.V.	2024
MASTER'S	Agricultural Chemistry & Soil Science	B.C.K.V.	2014
BACHELOR'S	Agriculture	U.B.K.V.	2012

10. EMPLOYMENT HISTORY: (Starting from present position)

POSITION	ORGANIZATION	PERIOD	
		From (Date)	To (Date)
Assistant Professor	B.C.K.V.	16.10.2016	Till date

11. ADMINISTRATIVE POST(S)/ RESPONSIBILIY(IES) (IF ANY)

SL. NO.	NAME OF THE POST(S)/ RESPONSIBILITY(IES)	PERIOD	
		From (Date)	To (Date)
1	Assistant Professor in Agricultural Chemistry and Soil Science at SSMP, BCKV	16.10.2016	Till date

12. AREA OF RESEARCH : (Bulleted list)

- Soil microbiology
- Soil fertility
- Soil chemistry

13. COURSES ASSOCIATED WITH:

LEVEL	COURSE NO.	COURSE TITLE	CREDIT
UNDERGRADUATE	CC 103	Environmental Studies and Disaster Management	2+1
	EC 261	Production and Use of Biofertilizer	2+1
	ACGP 203	Agricultural Microbiology	1+1
	EC 362	Agricultural Waste Management	2+1
	ELP 459	Biofertilizer Production and Marketing	0+10
POST GRADUATE	SOIL 507	Radioisotopes in soil and plant studies	1+1
	SOIL 512	Land degradation and restoration	1+0
Ph.D.	SOIL 606	Soil resource management	3+0

14. NUMBER OF STUDENTS SUPERVISED:

Master's.: 1 Doctoral: NIL

15. PROJECT ACTIVITIES

SL.	TITLE OF THE	FUNDING	ONGOING/	PI/ Co-
NO.	PROJECT	AGENCY	COMPLETED	PI
1	Community-Based Production, Promotion and Commercialization of Enriched Vernnicompost, Soil- Spccific Low-Cost BiofertilizerS, and Soil Test Based Judicious fertilizer Recommendations: A Holistic Approach to Smart Agro Solutions for Arsenic Mitigation, Improved Crop Yicld, and Livelihood Enhancement	Indian Council of Agricultural Research (1CAR)- Indian Institute of Agricultural Biotechnology	Ongoing (three years starting from 25.07.204)	Co-PI

16. CAPACITY BUILDING/FACULTY DEVELOPMENTPROGRAMME ORGANIZED:

17. SEMINAR/ SYMPOSIUM/ WORKSHOP etc ORGANIZED:

18. PATENTS/ HONOURS/ AWARDS/ RECOGNITION (Bulleted list):

19. INTERNATIONAL COLLABORATIONS/ INVOLVEMENT, IF ANY (Bulleted list):

20. PUBLICATIONS

A. BOOKS

B. RESEARCH PAPERS (Best 10)

- Sen, A., Saha, N., Sarkar, A., Poddar, R., Pramanik, K., & Kundu, R. (2024). Enhancing phosphorus availability and growth of green gram (*Vigna radiata*) in acidic red and laterite soil through liquid formulations of native phosphate-solubilizing bacteria. Biocatalysis and Agricultural Biotechnology, 61, 103413. <u>https://doi.org/10.1016/j.bcab.2024.103413</u>. [NAAS rating: 10.00]
- Sen, A., Saha, N., Sarkar, A., & Others. (2024). Assessing the effectiveness of indigenous phosphate-solubilizing bacteria in mitigating phosphorus fixation in acid soils. 3 Biotech, 14, 197. <u>https://doi.org/10.1007/s13205-024-04042-2</u>. [NAAS rating: 8.80]
- Barrow, N. J., Debnath, A., & Sen, A. (2023). Investigating the dissolution of soil phosphate. Plant and Soil, 490, 591–599. <u>https://doi.org/10.1007/s11104-023-06102-7</u>. [NAAS rating: 10.90]
- Padhan, D., Rout, P. P., & Sen, A. (2023). Changes in land use practices influence soil sulfur fractions and their bioavailability. Frontiers in Sustainable Food Systems, 7, 1233223. https://doi.org/10.3389/fsufs.2023.1233223. [NAAS rating: 10.70]
- Sen, A., Banerjee, S., Poddar, R., & Balo, S. (2022). Effectiveness of three organic acids on phosphorus solubilization in some acid soils of eastern India. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2022.2137186. [NAAS rating: 7.80]
- Barrow, N. J., Debnath, A., & Sen, A. (2022). Effect of phosphate sorption on soil pH. European Journal of Soil Science, 73(1), e13172. <u>https://doi.org/10.1111/ejss.13172</u>. [NAAS rating: 10.20]
- Barrow, N. J., Debnath, A., & Sen, A. (2020). Measurement of effect of pH on phosphate availability. Plant and Soil. <u>https://doi.org/10.1007/s11104-020-04647-5</u>. [NAAS rating: 10.90]
- Barrow, N. J., Debnath, A., & Sen, A. (2020). Effect of pH and prior treatment with phosphate on the rate and amount of reaction of soils with phosphate. European Journal of Soil Science. https://doi.org/10.1111/ejss.12968. [NAAS rating: 10.20]
- 9. Barrow, N. J., Sen, A., Roy, N., & Debnath, A. (2020). The soil phosphate fractionation fallacy. Plant and Soil. <u>https://doi.org/10.1007/s11104-020-04476-6</u>. [NAAS rating: 10.90]
- Barrow, N. J., Debnath, A., & Sen, A. (2017). Mechanisms by which citric acid increases phosphate availability. Plant and Soil. <u>https://doi.org/10.1007/s11104-017-3490-8</u>. [NAAS rating: 10.90]

Asup Sen

21.02.2025 Signature with Date